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1
TRUE RANDOM NUMBER GENERATOR
USING GPU AND SIGNAL PROCESSING
TECHNIQUES

This application is a national phase filing of PCT/
CA2012/050069 and claims benefit under 35 U.S.C. 119(e)
of U.S. Provisional Application Ser. No. 61/440,492, filed
Feb. 8, 2011.

FIELD OF THE INVENTION

The present invention relates to a novel technique to
implement a true random number generator (TRNG) using
sources of uncertainty found within graphics processing
units (GPUs) together with signal processing techniques, for
example histogram equalization, to obtain maximum
entropy.

BACKGROUND

Pseudo Random Number Generators (PRNGs) are widely
used in a variety of applications such as encryption, simu-
lation, gaming, art and communications to name just a few
examples. In some cases the quality of random numbers is
of paramount importance. Under such conditions, it is not
advisable to use PRNGs. For such special cases, another
class of random number generators called True Random
Number Generators (TRNGs) is frequently used.

The most commonly used random number generators are
the PRNGs. A PRNG uses a deterministic system and an
initial seed to reproduce the output sequence. Most common
PRNGs are classified as congruential generators, feedback
shift register generators, generators based on cellular
automata and generators based on chaotic systems, etc.
Shannon’s entropy of the output depends on the entropy of
the seed and the entropy of the output can never exceed the
entropy of the initial seed. PRNGs reproducibility is a great
asset for simulation; meanwhile entropy dependency and the
seed selection become a great challenge for exploiting its
parallelism and scalability.

TRNGs on the other hand are based on a non-determin-
istic source such as radio noise, radioactive decay, thermal
noise generated from a semiconductor diode, thermal flow,
etc. Complex and slow methods have been implemented
before based on user interaction or hardware events such as
capturing keystrokes, the mouse movement, the hard drive
seek times, system activity, and configuration or delays.

Overall, TRNGs have various advantages over PRNGs.
First, the unpredictability of TRNGs offers better random-
ness. Second, a TRNG lacks periodicity or data dependen-
cies, making it the best option for meeting the stringent
requirement for communication and encryption. Although
TRNGs have many advantages over PRNGs, PRNGs are
very popular due to their flexibility, low cost and sometimes
its generation time. In fact, one of the main reasons why
PRNGs are preferred over TRNGs is the implementation
cost, which for some TRNGs cases involves a huge initial
investment.

True Random Number Generator Classification

The randomness of a TRNG output depends on a non-
deterministic source and its corresponding deterministic
post processing step. In some cases the source of random-
ness does not produce random numbers according to the
needs of the user. For this reason, the post-processing stage
is used to modify the generated random numbers according
to a specified distribution.
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TRNGs can be subdivided into three phases. The first
phase generates digitized analog signal (DAS) random num-
bers, which are obtained from sources like random micro-
cosmic processes (i.e. the semiconductor thermal noise or
the shot noise of a Zener diode), and periodic digitization of
the time-continuous analog signal from the source. The
second phase generates the internal random numbers; which
represent the DAS random numbers after being post-pro-
cessed to reduce its distribution weakness. The third phase
is called external random numbers, and it corresponds to the
final result of the algorithm for extracting the random
number. This approach has been adopted since 2001 by the
German [T security certification authority (BSI) in its AIS 31
publication. In general, a good post-processing algorithm
guarantees higher entropy than the entropy of the source, as
long as the source is probed to be independent.

Another way to generate random numbers is by combin-
ing several independent sources. The randomness and inde-
pendence of these cumulative sources depends directly on
the number of combined sources, however, some statistical
defects might still be present, which can be alleviated by the
post-processing phase. This allows the flexibility of verify-
ing the entropy directly after the post-processing phase,
leaving an open window to design any post-processing
algorithm.

The Need of True Random Number Generators

It is well known that PRNGs fit most of the application
needs, however, sometimes the generated numbers lack
strong statistical properties. There are demanding situations
where PRNGs are substituted by TRNGs, such as generating
cryptographic keys, generating lists of lottery winner tickets,
or stochastic simulations. In these situations, the use of
PRNGs can become unreliable since its sequence becomes
predictable due to its geometrical properties.

Use of True Random Number Generators

Extensive research has been done on PRNGs, a good
survey can be found in D. Knuth, The Art of Computer
Programming, Addison-Wesley Publishing Company, 1998.
Research for TRNGs has been concentrated on the devel-
opment of better physical noise sources. TRNGs can be
found in low-cost semiconductors using digital design tech-
niques that fit reconfigurable devices (i.e. FPGAs, CPLDs,
and microcontrollers). Multiple designs based on different
sources of randomness and different techniques to generate
the internal random numbers had been proposed in Berk
Sunar, William J. Martin, Douglas R. Stinson, A Provably
Secure True Random Number Generator with Built-In Tol-
erance to Active Attacks, IEEE Transactions on Computers,
pp: 109-119, January 2007. For instance, some of them use
the combination of analog and digital designs to generate
and process white noise, some other apply a simple archi-
tecture of stable states by recombining a large number of
circuits.

Most of the existing approaches for parallelizing the
random number generation are based on PRNGs, by either
batches or using texture memories found in GPUs architec-
tures. New approaches had been explored by NVidia based
on CUDA (Compute Unified Device Architecture). In a
recent study, it was established that GPUs are highly effi-
cient in parallel PRNGs when compared to CPUs. However,
all these approaches are based on the use of a PRNG. To the
best of our knowledge, the use of GPUs for TRNGs has not
been documented before.

SUMMARY OF THE INVENTION

According to one aspect of the invention there is provided
a method of generating random numbers comprising:
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providing a general purpose computation device having a
primary function other than random number generation;

identifying at least one non-deterministic characteristic of
the general purpose computation device;

extracting random number data from said at least one
non-deterministic characteristic; and

performing a post processing function on the extracted
random number data.

Nowadays, the use of General Purpose GPUs (GPGPUs)
in high performance computing applications is becoming a
very popular new field of applied research of high perfor-
mance computing applications. GPUs have been shown to
be very effective in data parallel problems. The present
invention provides an opportunity to develop a TRNG that
generates high quality random numbers in a scalable and
economical design.

Preferably the general purpose computation device com-
prises a general purpose processing unit and said at least one
non-deterministic characteristic comprises a characteristic
of the processing unit.

Preferably the general purpose computation device com-
prises an embedded system and said at least one non-
deterministic characteristic comprises a characteristic of the
embedded system.

Preferably the general purpose computation device com-
prises a graphics processing unit and said at least one
non-deterministic characteristic comprises a characteristic
of the graphics processing unit.

The non-deterministic characteristic may comprise one or
both of two independent characteristics which are:

a measurement of an elapsed time of a group of possible

race conditions; and

a completion time for sampling and processing a tem-

perature value of a core temperature of the processor.

When the processor comprises a graphics processing unit
including a thermal control interface and an application
programming interface, preferably the temperature value is
extracted by the application programming interface from the
thermal control interface.

The post processing function may include performing
data compression on the extracted random data according to
the following function:

Jrc#)=10"tzc mod(1.0)

where 1, is the elapsed time of the group of possible race
conditions and the first n decimal places are removed and the
value is considered from that point to the right.

The post processing function may include performing
data compression on the extracted random data according to
the following function:

Jrcd#)=10"t7c mod(1.0)

where t, is the completion time for sampling and pro-
cessing the temperature value and the first n decimal places
are removed and the value is considered from that point to
the right.

Preferably the method includes performing the post pro-
cessing function on the extracted random number data such
that statistical properties of the extracted random number
data are improved using a statistical matching and normal-
ization technique arranged for uniformly distributing gray
level values in image processing.

According to a further aspect of the present invention
there is provided a method of generating random numbers
comprising:

obtaining random number data from a source; and
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4

performing a post processing function on the random
number data using a statistical matching and normalization
technique arranged for uniformly distributing gray level
values in image processing.

A transformation function is preferably used to linearize
a cumulative distribution function of the random number
data along the value range.

The method preferably includes interpolating values
within limits of a selected bin associated with the data and
changing the value to be uniformly distributed along the bin
when the same value is present in the bin.

The statistical matching and normalization technique may
be selected from the group including histogram equalization
and exact histogram equalization.

The exact histogram equalization preferably includes:

ordering eclements in the data according to x;<
X< K

splitting the ordered sequence according to L groups that
contain h elements each; and

assigning a value to each group by interpolating values
within limits of a bin associated with the data and changing
the value to be uniformly distributed along the bin when the
same value is present in the bin.

According to a further aspect of the present invention
there is provided a method of generating random numbers
comprising:

providing a source having at least one non-deterministic
characteristic; extracting random number data from said at
least one non-deterministic characteristic of the source; and

performing a post processing function on the extracted
random number data.

The source preferably comprises a primary function other
than random number generation.

Various embodiments of the invention will now be
described in conjunction with the accompanying drawings in
which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a random number
generator.

FIG. 2 is a representation of the ANSI C code that
provokes a race condition.

FIG. 3 is a histogram of the proposed sources of random-
ness for 10° samples, with a 5.0x107> bin size in which the
measurement of time of race conditions is tz~ and the
measurement of time to sample the core temperature is .

FIG. 4 is schematic representation of the subdivisions of
the post-processing algorithm.

FIG. 5 is a standard version of a representative 512x512
grey-scale image.

FIG. 6 is a random image using equation 6 and EHE.

FIG. 7 is a graphic representation of data compression for
n=0.

FIG. 8 is a graphic representation of data compression for
n=1.

FIG. 9 is a graphic representation of data compression for
n=2.

FIG. 10 is a graphic representation of data compression
for n=3.

FIG. 11 is a graphic representation of data compression
for n=4.

FIG. 12 is a graphic representation of data compression
for n=5.
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In the drawings like characters of reference indicate
corresponding parts in the different figures.

DETAILED DESCRIPTION

The present invention relates to a low-cost, effective and
novel technique for designing a TRNG using sources of
uncertainty in a GPU. For experiments, a NVidia GeForce
9400M graphic card was used. It was also demonstrated that
the present invention offers fast execution times and can be
easily implemented on parallel architectures. The quality of
the random number generator was tested by using statistical
tests on the two proposed sources of uncertainties: 1) threads
race conditions and ii) GPU core temperature.

Because of the more frequent use of GPUs in today’s
computational systems, the present invention highlights the
benefits of implementing a parallel and completely indepen-
dent TRNG based on the GPU architecture. An easy and
effective way to generate TRNGs is provided herein without
compromising the importance of PRNGs.

As described further below, the random numbers gener-
ated by the present invention have been evaluated using four
tests. First, we measure the correlation values between two
sequences of random numbers, second, we measure the
entropy values, third, we use watermarking, an application
used in network security and finally we use Monte Carlo
analysis for pi-value calculation. Based on these quality
measurements, our method has achieved better results than
popular random number generators compared in this work.
Furthermore, this approach is a massively scalable solution
ideal for high performance computing implementations.

As suggested by M. Hocko and T. Kalibera, (Reducing
performance non-determinism via cache-aware page alloca-
tion strategies, In Proceedings of the First Joint WOSP/
SIPEW international Conference on Performance Engineer-
ing, San Jose, Calif., USA. Jan. 28-30, 2010, pages 223-
234), sources of randomness can be found in most
computational devices in the following three classifications:
(1) sources originating in the hardware, like core tempera-
ture, (2) sources originating from PRNG like a linear con-
gruential RNG and (3) sources originating from very com-
plex deterministic processes like page allocators, or system
schedulers or race conditions.

Therefore, GPU programs are not the exception to non-
deterministic behavior during race conditions, in which an
unknown behavior is observed from multiple unsynchro-
nized threads writing and reading from the same memory
location [4]. During a race condition as mentioned in M.
Boyer, K. Skadron, W. Weimer, Automated dynamic analy-
sis of CUDA programs, In Third Workshop on Software-
Tools for MultiCore Systems, 2008, a source of randomness
can be obtained; thus, the measurement of the elapsed time
of a group of possible race conditions can be a feasible and
indirect measurement of this source of randomness.

Another non-deterministic behavior present in all semi-
conductors is the core temperature change. It was observed
that the temperature extracted from the NVIDIA Application
Programming Interface (NV-API) using the GPU thermal
control interface follows a non-deterministic behavior in the
elapsed time of its calculation. One limitation is the accuracy
cut-off of the decimal part, which shows a true random
behavior. Additionally, race conditions and thermal flow are
also well known sources of randomness. Nevertheless, to the
best of our knowledge, the use of the above mentioned
random sources to extract true random numbers from GPUs
has not been considered before. Our focus is then on these
sources of randomness to generate true random numbers.
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6

We analyzed two cases: 1) the time measurement of a
group of race conditions, and ii) the measurement of the time
taken to sample the core temperature. These options appear
inside the Digitized noise source in the general block
diagram of the proposed random number generator in FIG.
1.

The Measurement of Race Condition Times

CUDA was designed by NVidia in 2006 to unify two
different groups of processors and to optimize the power
consumption; CUDA contains an intelligent thread sched-
uler module, which assigns the load to threads in a round
robin fashion. This programming model, called SIMT
(Single Instruction Multiple Threads), executes the same
instruction on all threads created for that process. However
the scheduler is oblivious to the order in which the threads
will finish their tasks. Even without this information, the
scheduler is able to predict and avoid race conditions for
memory access beforehand by manipulating the order of
instructions and introducing context switching among
threads. In our case, an interesting phenomenon was
observed using the code described in FIG. 2, in particular,
when the number of threads is 32n+1, the case of 129 threads
or the variable SIZE=129.

Taking advantage of the speed of shared memory and its
supported coherency model, two vectors were defined in
lines 4 and 5, where the vector size s is lower than the out
vector; with the purpose of introducing an unknown value X
that will be propagated depending on the order that threads
127, 128 and 129 finish.

In lines 10 and 11, the assignment to s[id] is not synchro-
nized with the following reading instruction for s[id+1] and
its storage in out[id]; in this case there will be occasions
where out[id] will be id+1, but this is not guaranteed, and the
value is unknown, since it is still being written or is about
to be written by the thread id+1.

The Measurement of Time to Sample the Core Temperature

In the GeForce family line of products, the NVidia core is
provided with a diode as a built-in temperature measurement
device. It is well known that diode thermometers are used in
temperature measurements due to their low cost, stability of
nearly 0.8 C for a range from -55 C to 150 C, linearity,
simple circuitry and good sensitivity.

As the temperature changes in the diode, the forward
voltage across the p-n junction changes linearly. This volt-
age is digitized and stored in a register, which indirectly
represents the core temperature. The time for retrieving the
register by a call from the NV-API behaves like a non-
deterministic process. In other core diode thermometers
used in the GeForce family, the registers access follows a
round-robin selection method such as in the ADT7473
diode. Therefore, it can be identified that the measurement
of the completion time for extracting the temperature value
is the source of randomness.

By doing a simple inspection of the histograms of both
suggested sources of randomness shown in FIG. 3, no
particular shape associated to a common probability distri-
bution function is evident. It can be noted also that the
numbers are concentrated within a small specific range; thus
a post-processing stage is needed if random samples are
needed that are distributed as a more common distribution
such as the standard uniform.

For a better understanding of the post-processing stage,
this stage is subdivided into three sections: data compres-
sion, mapping functions and statistical matching with nor-
malization techniques. These sections are illustrated in FIG.
4. In the statistical matching stage, two very well known
image processing techniques, histogram equalization and
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exact histogram equalization, will be used to modify the
random samples in such a way to obtain random samples
with a uniform distribution. This, in fact leads to maximum
entropy as it will be explained in subsequent sections.
The Post-Processing Algorithm

The first stage of the post-processing algorithm is the data
compression, meaning that information will be encoded in
smaller representation units. There are tradeoffs by applying
data compression, for example, how the statistical weak-
nesses are masked and transformed into others, meanwhile
the entropy increases. In this sense, the stage is implemented
with the following equations,

Frocl)=10"tp mod(1.0) (1)

Srem =107 7¢ mod(1.0) &)

where the first n decimal places are removed and the value
is considered from that point to the right, t,. represents the
sequence of random numbers obtained from the race con-
dition source and t,. from the temperature source. The
modulus operation has a range on [0, 1.0].

For the second stage, seven basic mapping functions were
arbitrarily selected with the purpose of measuring their
impact after the third stage. This includes addition, subtrac-
tion, multiplication, exponentiation and modulus of two
signals. The evaluated functions were:

3

fo=frc

fi=frc (©)]

H=(frctfrc)mod(1.0) ®

Q)

f3=frcfre

Ja=(frc~frc+1)mod(1.0) M

J5=(frc-frc+1)mod(1.0) ®)

fe=f chC

©

The third stage is the statistical matching with normal-
ization techniques, where histogram equalization and exact
histogram equalization were used in order to obtain uniform
distributed random numbers which at the same time offer
maximum entropy.

Histogram Equalization and Exact Histogram Equalization

Histogram equalization (HE) is a technique used in image
processing that enhances the contrast of an image by guar-
anteeing a final image with a distribution of gray level values
that resembles the uniform distribution as described in R. C.
Gonzalez, R. E. Woods, Digital Image Processing, 2nd
Edition, Prentice Hall, 2002. HE is based on the following
mathematical observations:

Given a discrete random variable, X, with the probability
mass function (p.m.f.) or histogram,

PxX)=PX=x):R—[0,1]

the cumulative distribution function (c.d.f.) or the accumu-
lated normalized histogram is,

10)

F@=PX=x=) pxx) an

xp=x

The HE technique suggests using a transformation func-
tion in the form of

Y=F(x) (12)
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where the transformation function will linearize the c.d.f. of
x along the value range, and then Y is supposed to have a
uniform distribution. A slight modification is proposed since
the distribution inside the bins needs to be preserved and not
replaced by an integer value. The modification then consists
on interpolating the value within the limits of the bin and in
the only case where the same value is present in the bin; this
value is changed and uniformly distributed along the bin.
Although HE can be considered as one of the most
popular approaches among the image enhancement tech-
niques, it can show spikes and gaps in the final uniform
histogram. The second technique that will be evaluated then
is Exact Histogram Equalization (EHE) that yields a final
histogram that is completely flat without having the unde-
sired effects mentioned above. Exact Histogram Equaliza-
tion is described in D. Coltuc, P. Bolon, J. M. Chassery,
Exact histogram specification, IEEE Transaction on Image
Processing, 15(5), pages 1143-1152, May 2006. The neces-
sary steps to achieve these complete uniform histograms are:
1) Ordering the elements in the dataset such that,

X<Ko< L L <Ky (13)

2) The ordered sequence is split in L. groups that contain
h elements each.

3) A value is assigned to each group. Specifically in this
step, a similar interpolation as in HE is introduced in order
to preserve the source distribution within the bin. The
scheme of EHE yields the exact results, since the dataset is
transformed exactly into the desired distribution by fixing
the bin elements count.

The Evaluation Criteria

The evaluation is divided into four stages. The first stage
evaluates the independence of the das random numbers and
the post processing establishes that if the internal random
numbers are independent from the noise source, then the
entropy can be evaluated after the post processing without
compromising the statistical properties. The Pearson prod-
uct-moment correlation coefficient was used to measure the
independence of the two random variables:

_ EIX = )Y —py)] 14

Pxy =
Tx0y

where E denotes the expected value, ., p, the respective
averages and o,, 0, denotes the variances. For independent
variables, a correlation value nearer to O is expected. Oth-
erwise, as it becomes near to =1, the relationship proves to
be linear.

The second evaluation stage is based on measurements of
the normalized entropy, H, as proposed in A. Kaufmann,
Introduction to the theory of fuzzy subsets, New York,
Academic Pr vol. 1, 1975:

1s)

1 &
H= —log(—k);l flPlogf(f)

where k is the total number of bins. By using Equation 15,
different techniques can be evaluated under the same basis
within the range [0, 1], in which the higher value in Equation
15 indicates that the random numbers generated are more
uniformly distributed. For this evaluation stage, the normal-
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ized entropy of seven proposed functions was compared
against the normalized entropy of a common PRNG, the
Mersenne Twister.

The third stage consists of a proof of concept via an actual
application of the random numbers generated by the pro-
posed approach. The evaluation considers two methods for
digital image watermarking: i) Least Significant Bit (LSB)
modification as described in R. G. van Schyndel, A. 7.
Tirkel, N. R. A. Mee and C. F. Osborne, A Digital Water-
mark, First IEEE Image Processing Conference, Houston,
Tex., November 1994, vol 11, pages 86-90, and ii) Discrete
Cosine Transform (DCT) modification as described in C.
Chan, T. Chen, and H. Hsia, An Image Watermarking
Scheme Using Pattern Coding Technique, In Proceedings of
the First international Conference on innovative Computing,
information and Control—Volume 3 (Aug. 30-Sep. 1, 2006),
ICICIC, IEEE Computer Society, Washington, D.C., pages
467-470. In this stage, for the case of LSB, the image in FIG.
5 was encoded with an image containing random numbers as
the watermark, shown in FIG. 6. For the DCT case, a 64 byte
key (random numbers) was encoded as the watermark in the
image shown in FIG. 5. In the next step the encoded image
was exposed to Gaussian noise (=0, 6°=0.01) and salt and
pepper noise (density=0.05). Finally, the encoded image was
decoded to retrieve the watermark.

Once decoded, the Peak Signal to Noise Ratio (PSNR)
was selected as a quality metric that shows how visible and
robust the watermark is. In consequence, the higher the
PNSR value the better invisibility, implying a closer resem-
blance between the reconstructed and the original water-
mark.

Consider I, as the original watermark for an 8-bit grey-
scale image of size mn or a 64 byte key. I, will represent the
reconstructed watermarked image or the reconstructed 64
byte key, meanwhile the Mean Squared Error (MSE) is
defined as:

(16)

| mednct
MSE=— Lo, j) - LG, T
mn < -
=0 j=0

an

- 1>2]

PSNR = 1010g10( VISE

In our case, a minimum of 38 dB is expected for a decent
invisibility. This was also compared to the evaluation of an
image or a key of random numbers from the Mersenne
Twister PRNG.

The fourth evaluation stage consists of another very well
known application that uses random numbers: the approxi-
mation of u using the Monte Carlo method. Consider a pair
of random variables (X,,Y,)~U,(0,1), i=1, . . . n and

P(X;2+}12<1)=g )

so the estimator for 7 can be defined as:

4#{(X;, Y XP+YE< 1} 19)
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10
where # represents the cardinality of the set. Then an error
estimator for z can be defined as z,, from the subtraction
from the decimal representation of 7 truncated to 50 decimal
places, zs,:

] (20)

250

The approximation was evaluated for 10%, 10* and 10°
iterations.

Results

Stage-1 Independence of Das Random Numbers and Post
Processing Random Numbers.

As it can be observed from Table 1, the independence of
das random numbers and the first post processing stage was
reliable for both random sources when the data compression
was taken from 107%, or n=1. But independency becomes
poor after the data was compressed for 10™*. This can be
related to how the data concentrates in a similar uniform
shape in FIGS. 8 to 11, while in FIGS. 7 and 12 a poor
concentration on the centers can be observed. Hence the
signals that yielded the histograms in FIGS. 7 and 12 were
not considered for further investigation.

TABLE 1

Correlation results from the comparison of das random

numbers and the first post processing stage

B Pren Pircn

0 -0.4542999000 0.4645102000
1 0.0422047600 0.0003828042
2 -0.0015706590 -0.0003443821
3 0.0002900318 0.0005655271
4 0.0150430400 -0.0041530290
5 0.1875572000 -0.1041387000

Stage-2 Normalized Entropy Results

Since it’s only reliable to evaluate elements which are
independent from the source, the evaluation of the proposed
functions and the statistical matching with normalization
techniques was focused in data compression results from
107! to 10™* only. This can be observed in Table 6. Also it
can be noticed how the Exact Histogram Equalization
improves the entropy tremendously, so the highest value and
a standard uniform distribution is achieved.

Stage-3 Proof of Concept Application: Digital Image Water-
marking

Based on the previous testing stage results, only the
random numbers obtained after the Exact Histogram Equal-
ization was used as shown in Tables 2 through 5. It can be
observed how the watermarking invisibility is better with the
proposed TRNG key than when using the Mersenne Twister
random number key. This result suggests that the use of the
proposed TRNG can be applied for encryption of the water-
marks even under noise attacks.
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TABLE 2

PSNR (in dB) of the retrieved watermark using the LSB modification
method under an attack of salt & pepper noise, d = 0.05.

12

needed to achieve better performance is smaller. As it can be
observed, the smaller error percentage occurs in f,, n=3, for
10000 iterations.

N 5 TABLE 6
Function 1 2 3 4 MT Normalized entropy results
10 57.1924 571914  57.1958  57.1946  57.1870 Normalized entropy
fl 57.1924 571968  57.1906  57.1964
2 57.1923 571954  57.1924  57.1965 10 Post- MT
3 57.1927 57.1922 57.1921 57.1947 n Function processing HE EHE (1997)
el 57.1999 571965  57.1942  57.1905
f5 57.1891  57.1925  57.1947  57.1985 1 10 0947127 0985337  1.000000  0.999943
16 57.1920 571907  57.1970  57.1954 fl 0986136  0.996494  1.000000
2 0996751  0.997700  1.000000
15 3 0.885556  0.999504  1.000000
el 0992520  0.996552  1.000000
TABLE 3 f5 0992525  0.996427  1.000000
16 0950560  0.998269  1.000000
PSNR (in dB) of the retrieved watermark using the 2 fo 0.869890  0.799358 1.000000
LSB modification method under an attack of Gaussian fl 0.882504  0.803270 1.000000
white noise, u = 0. 02 = 0.01 » 3 0935126 0996804 1000000
N el 0.899480  0.802717  1.000000
f5 0.899480  0.802056  1.000000
Function 1 5 5 4 MT 16 0963481  0.997909  1.000000
3 10 0.545030  0.500046  1.000000
10 57.1735  57.1797  57.1853  57.1880  57.1926 f1 0.546762  0.571412  1.000000
fl 57.1965  57.1839  57.1893  57.2024 25 2 0.566206  0.670942  1.000000
2 57.1998 571711  57.1962  57.1847 3 0.763576 ~ 0.754090  1.000000
3 57.1811  57.1808  57.1818  57.1890 4 0.566211  0.668187  1.000000
4 57.1910  57.1860  57.1869  57.1998 15 0566203  0.671355 1.000000
f5 57.1906  57.1956  57.1958  57.1813 16 0.832229  0.865148  1.000000
16 57.1725  57.1835 571858  57.1836 4 10 0313277 0369723 1.000000
30 fl 0316906  0.325093  1.000000
2 0344759  0.620820  1.000000
3 0371963  0.511505  1.000000
TABLE 4 el 0344850  0.620594  1.000000
f5 0344846  0.1620217  1.000000
PSNR (in dB) of the retrieved watermark using the 6 0.440119  0.519349 1.000000
DTC modification method with a keylength of 64, under 35
an attack of salt & pepper noise, d = 0.05.
> TABLE 7
Function 1 2 3 4 MT Error estimator of ;t approximation
f0 SLoAdl 812441 8Loadl 842544 sioaal using Monte Carlo method for 10” iteration
fl 84.2544  81.2441  84.2544  79.4832 N
2 84.2544  81.2441  81.2441  81.2441
3 81.2441  81.2441 81.2441  84.2544
4 84.2544 812441  70.4832  84.2544 F ! 2 3 4 MT
£5 8l.2441  84.2544 @ 81.2441 45 10 0019606  0.044056 0018592  0.032338  0.031324
f6 8l.2441 794832 794832  84.2544 f1 0.005859  0.057803  0.019606  0.006873
2 0.005859 0.044056  0.006873  0.057803
3 0.019606 0.044056  0.006873  0.056789
el 0.032338 0018592  0.044056  0.005859
TABLE 5 5 0.019606 0.006873  0.019606  0.019606
50 6 0.005859 0.044056  0.057803  0.04507
PSNR (in dB) of the retrieved watermark using the DTC
modification method with a keylength of 64, under an
attack of Gaussian white noise, u = 0, o° = 0.01.
TABLE 8
N
. 55 Error estimator of @t approximation
Function 1 2 3 4 MT using Monte Carlo method for 10% iterations
10 72,7931 734626 722132 727931  72.2132 N
fl 722132 731150 727931  73.1150
2 724935 719499 724935  72.7931
3 724935 734626 724935  72.4935 F ! 2 3 4 MT
4 734626 73.1150  72.7931  72.4935 60 0011461 0001016 0000639  0.001908  0.004963
f5 724935 727931 73.1150  73.4626 fl 0.00013 0003058 0003949  0.002294
f6 734626 742544 73.4626  72.2132 £ 0.00726 0005095  0.003313  0.001398
3 0.002167 0001526  0.002294  0.001653
Stage-4 Approximat.ion Us.ing the Monte Carlg Methoq. ?51 g:ggzggi 8:88%2 %)23321356 8:8833;3
The results for this section show how the pi approxima- 65 g 0.005605 0.002544 0005218  0.000507

tion yields better results when using the proposed TRNG, as
shown in Tables 7-9. Additionally, the number of iterations
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TABLE 9

Error estimator of ;t approximation
using Monte Carlo method for 10° iterations

N

F 1 2 3 4 MT
fo 0.009558 0.000207 0.000479 0.000557 0.000463
f1 0.000171 7.02E-05  0.000493 0.000319

f2 2.19E-05 5.88E-05  0.000752 0.000582

3 0.004513 0.000261 0.000449 0.000443

4 0.000671 5.71E-05  9.91E-05  3.42E-05

5 0.000118 7.87E-05  0.000423 0.000186

f6 0.006835 0.000499 0.000198  9.32E-05

CONCLUSION

A novel technique for extracting and post processing
random numbers using the GPU architecture has been
presented, showing the advantage of implementing a TRNG
on GPUs as a scalable and inexpensive solution. A roadmap
for analysis has also been discussed showing the benefits of
applying data compression followed by exact histogram
equalization to improve the statistical deficiencies of the
TRNG. In this sense, the TRNG was shown to have an
excellent performance in security and privacy applications,
as well as in stochastic simulations, leaving open for future
research its optimization and the analysis of other noise
sources in GPUs.

Since various modifications can be made in my invention
as herein above described, and many apparently widely
different embodiments of same made within the spirit and
scope of the claims without department from such spirit and
scope, it is intended that all matter contained in the accom-
panying specification shall be interpreted as illustrative only
and not in a limiting sense.

The invention claimed is:

1. A method of generating random numbers comprising:

using a general purpose computation device to execute a

primary function other than random number genera-
tion;

extracting random number data from the general purpose

computation device by extraction of number data from
a measurement of a physical phenomena of the general
purpose computation device comprising at least one of
1) an elapsed time of a group of possible race conditions
from the use of the general purpose computation device
to execute the primary function other than random
number generation and ii) a completion time for sam-
pling and processing a temperature value of a core
temperature of the general purpose computation device
from the use of the general purpose computation device
to execute the primary function other than random
number generation; and

performing a post processing function on the extracted

random number data to produce the random numbers.

2. The method according to claim 1 wherein the general
purpose computation device comprises a general purpose
processing unit.

3. The method according to claim 1 wherein the general
purpose computation device comprises an embedded sys-
tem.

4. The method according to claim 1 wherein the general
purpose computation device comprises a graphics process-
ing unit.
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5. The method according to claim 1 wherein the physical
phenomena of the general purpose computation device com-
prises the elapsed time of the group of possible race condi-
tions from the use of the general purpose computation
device to execute the primary function other than random
number generation.

6. The method according to claim 1 wherein the mea-
surement of the physical phenomena of the general purpose
computation device comprises the completion time for sam-
pling and processing the temperature value of the core
temperature of the general purpose computation device from
the use of the general purpose computation device to execute
the primary function other than random number generation.

7. The method according to claim 6 wherein said general
purpose computation device comprises a graphics process-
ing unit including a thermal control interface and an appli-
cation programming interface and wherein the temperature
value is extracted by the application programming interface
from the thermal control interface.

8. The method according to claim 1 wherein the physical
phenomena of the general purpose computation device com-
prises both:

the elapsed time of the group of possible race conditions;

and

the completion time for sampling and processing the

temperature value of the core temperature of the gen-
eral purpose computation device.

9. The method according to claim 8 wherein the post
processing function includes performing data compression
on the extracted random number data according to the
following function:

Jrc®)=10"tzc mod (1.0)

where t. is the elapsed time of the group of possible race

conditions and the first n decimal places are removed

and the value is considered from that point to the right.

10. The method according to claim 8 wherein the post

processing function includes performing data compression

on the extracted random number data according to the
following function:

Jrc(m)=10"7c mod (1.0)

where t; is the completion time for sampling and pro-
cessing the temperature value and the first n decimal
places are removed and the value is considered from
that point to the right.

11. The method according to claim 1 including perform-
ing the post processing function on the extracted random
number data such that statistical properties of the extracted
random number data are improved using a statistical match-
ing and normalization technique arranged for uniformly
distributing gray level values.

12. The method according to claim 11 including using a
transformation function to linearize a cumulative distribu-
tion function of the random number data along the value
range.

13. The method according to claim 12 including selecting
a bin associated with the data, interpolating values within
limits of the bin and changing the interpolated value to be
uniformly distributed along the bin when the same value is
present in the bin.

14. The method according to claim 11 wherein the sta-
tistical matching and normalization technique is either his-
togram equalization or exact histogram equalization.

15. The method according to claim 11 wherein the sta-
tistical matching and normalization technique comprises
histogram equalization.
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16. The method according to claim 11 wherein the sta-
tistical matching and normalization technique comprises
exact histogram equalization.

17. The method according to claim 16 wherein the exact
histogram equalization includes:

ordering elements in the data according to x;<

X< K

splitting the ordered sequence according to L groups that

contain h elements each; and

assigning a value to each group by interpolating values

within limits of a bin associated with the data and
changing the value to be uniformly distributed along
the bin when the same value is present in the bin.

#* #* #* #* #*

10

16



